If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=2h^2+12h-4986
We move all terms to the left:
0-(2h^2+12h-4986)=0
We add all the numbers together, and all the variables
-(2h^2+12h-4986)=0
We get rid of parentheses
-2h^2-12h+4986=0
a = -2; b = -12; c = +4986;
Δ = b2-4ac
Δ = -122-4·(-2)·4986
Δ = 40032
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40032}=\sqrt{144*278}=\sqrt{144}*\sqrt{278}=12\sqrt{278}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-12\sqrt{278}}{2*-2}=\frac{12-12\sqrt{278}}{-4} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+12\sqrt{278}}{2*-2}=\frac{12+12\sqrt{278}}{-4} $
| 64-16x=32x2 | | p-6=-40 | | x+51+60+80=180 | | x2-(2/3x)2+2x-2/3x=1 | | 4x+1/2(2x+4)=12 | | 5p+80=135 | | 80p+5=135 | | 2x+x/4=x+4 | | 71+x+70+50=180 | | 6x-5=x/2 | | (3x^2-12)(-x^2+x-2)(x^2+1)=0 | | -4p=-9p−10 | | 2x+100=1105 | | 2x+100=1185 | | 8n-(3n+5)=15 | | x+1/2=(2x-6)-5 | | 16a-7=12 | | -4K+2(5k-2)=-3k-39 | | 1.5x-3=1/3+11/20 | | c/8+7=13 | | 3-(2x-5)=x | | 0=-4-2m | | r/8+8=13 | | 54x-108=54x+270 | | 11=b/5+8 | | -40=5y-5 | | 2.1=7.7-0.8x | | 3/4n-6=21 | | 6x+12=12x-12 | | 32=2(p+8) | | 12x+12=12x-4 | | -22=-6v+(v-5) |